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In the conformation space of a flexible molecule, curvilinear coordinate paths 
connecting conformations of  segments of  the given molecule are used to 
reduce the number  of  variables required for describing barriers between 
preferred conformations of  the molecule as a whole. The technique is applied 
to a hypothetical example, then to rn-trifluoromethyl-N-ethyl-amphetamine 
(fenfluramine), and to N-methyl-3-phenyl-3-(o-methoxyphenoxy)-propyl-  
amine (nisoxetine). In the latter example, the number of  variables is thus 
reduced from six to three. In all three examples, a graph representation of 
low-energy well connection is achieved. The limit of  easy comprehension has 
thus been moved back from about three torsion angles to three effective 
segments. Within this limit the procedure leads to a quantitative diagram, 
which is no harder to read than a contour map, showing the barriers to 
low-energy interconnection among the favorable conformations of  a moder- 
ately complex molecule. 

Key words: Non-linear dimension reduction - -  Curvilinear c o o r d i n a t e s -  
Graphical  presentation - -  low-energy well connection graph 

1. Introduction 

Many techniques of  reducing the dimensionality of data are known. Some are 
familiar and are often used. We present an application of curvilinear coordinates 
whose uses in chemistry do not seem to have attracted attention. 
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Investigators have not neglected the possibility of analyzing the conformation 
energy map of a complex molecule by looking successively at important flexible 
segments [1-3]. However, the subsequent synthesis often requires so many vari- 
ables that the collection, analysis, and presentation of data for the molecule as 
a whole may appear impractical. In this situation, simplification by introducing 
curvilinear coordinates is possible. 

Suppose for now that a molecule may be divided into two segments, the first 
comprising n 1 rotation angles, and the second n2. The rotation- or conformation- 
space, U1, of the first segment has dimension nl while U2, that of the second, 
has dimension n2. The space of the whole molecule is the cartesian product 
U 1 x U2,  which has dimension n I q- n 2. 

If  arcs F1 and F 2 are chosen in U~ and /-/2, then in U1 x U2 those arcs will be 
orthogonal, no matter how they are chosen. If  the arcs are somewhat smooth 
then the cartesian product of F~ and F2 may be thought of as embedding a plane 
into U~ x U2 as a curved 2-dimensional submanifold. Because it is 2-dimensional, 
those features of the space which appear on (or even near) the embedded plane 
can be presented readily on paper for analysis or publication. 

For a long time, linear techniques such as those based on regression have been 
used with great confidence to embed a plane into euclidian space, leaving its 
distance and angle properties calculable when needed. In contrast, the novelty 
of the present procedure is to allow non-linear and indeed virtually arbitrary 
embeddings of the plane, which necessarily appears flat in its own coordinate 
space. The concommitant cost is the immediate loss of all the metric properties, 
curvature, distance and angle. We illustrate that in some cases this cost is 
acceptable since those properties are virtually unused. As with linearly-embedded 
planes, points which lie close to a plane embedded non-linearly may often be 
considered as belonging in the resulting surface. 

At times the technique may suggest realistic savings of calculational effort, but 
it is not presented as a new calculational device. It shows instead how to organize 
and reduce the amount of data necessary for consideration and thus minimize 
the dimensional obstacles to comprehension of the results. It is primarily a matter 
of analysis and presentation [4]. 

The representation which results is a "graph", an object of a well known class 
whose uses in chemistry are acquiring prominence [6-8]. In fact, the graphs 
presented in this study will have "capacity", and the final example will not be 
2-dimensional but 3-dimensional. 

2. A hypothetical example illustrating the technique only 

Realistic examples of sufficient complexity to illustrate the technique tend to be 
hard to present. Therefore, the first example is artificial in order to be easily 
accessible. 

Suppose the molecule M consists of a chain of three bonds with rotation angles 
r l ,  r2, % joining four groups Y1, Y2, Y3, Y4 whose rigidity is not in question 
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Fig. 1. Segment structure of the hypothetical molecule M 

(see Fig. 1). Suppose further that M is thought of  as divided into two segments, 
$1 whose configuration is described by one rotation angle, Zl, and $2, described 
by ~2 and Ts. The rotation space of S1, called U1, is of dimension nl = 1; U2, 
that of  $2, is of dimension n2 = 2; and that of  M, the cartesian product  called 
U = U1 x U2, is of dimension n~ + n2 -- 3. Into this space we embed a plane as a 
2-dimensional manifold intersecting the energy wells and containing the connec- 
tions between them. 

Suppose that in the isolated segments S1 and $2, the rotations q'l and z3 each 
have two favored values, 90 ~ and 270 ~ while T2 has three, at 60 ~ 180 ~ and 300 ~ 
The corresponding favored positions in the rotation spaces of  the segments are 
labelled with capital letters, as in Fig. 2. 

In the cartesian product U1 x U2, the rotation space of M, the expected configur- 
ations would be pairs; AC = (90 ~ 60 ~ 90~ BC = (270 ~ 60 ~ 90~  BH = 
(270 ~ 300 ~ 270~ a pair of letters corresponding to a triple of angles ( ' r l ,  7"2, "/'3) 

determining a configuration of M. 

Now suppose that near each of these locations, there is in fact an energy well, 
the energies [9] near AC, BC, AE, BE, AF, BF, AH, and BH being 2 k; those 
near AD, BD, AG, and BG being 0 k. Finally, suppose that the connection barrier 
heights are as in Table 1. A picture of U is shown in Fig. 3, indicating the energy 
wells and the paths with low barrier heights. 

In this oblique view, the path from BC to BG is quite clear, via AC and AG, 
with two 6 k barriers between. However, the usual representations of  this space 
consist of at most three projections into dimension 2, as shown in Fig. 4. 

SI: 

U1 1"1 
; 

1"3 
$2: 

U2 

1 2 
36O 

Fig. 2. Favored positions in the rotation spaces of S 1 and $2, for molecule M 
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Table 1. Direct connection barrier heights for molecule M 

3k: AC-AG, AG-AE, BF-BD, BD-BH 
6k: AC-BC, AD-BD, AE-BE, AF-BF, AG-BG, AH-BH 

10k: all others 

-r 1 

Fig. 3. Energy wells and connections for molecule M, (shown in perspective). Energy minima at 
0k: 0 ;  at 2k: .; Connections at 3 k: solid; at 6k: dashed 

The projections in Fig. 4 suggest that there is a direct path from BC to BG with 
barrier height 3 k, but this is not the case. The data in Table 1, from which the 
figures were constructed, show that the direct connection BC-BG has a barrier 
height of at least 10 k, while the minimal energy path is BC-AC-AG-BG,  which 
has barrier height 6 k. Barriers such as this, which do not appear in coordinate 
projections such as Fig. 4, are called "hidden"  barriers [10]. Their presence, 
which is always to be expected, constitutes the basic reason for devising and 
introducing new presentation methods. 

T 3 

I-- m -- I 

T2 T 1 Zl 
Fig. 4. Energy wells and connections for molecule M, shown in mutually orthogonal projections into 
dimension 2. Energy minima at 0 k: O; at 2 k: .; Connections at 3 k: solid; at 6 k, dashed 
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This example was so constructed that Fig. 3 is easy to interpret, although it 
succeeds in showing the complexity of the whole rotation space with all significant 
wells and connections. That construction required finding an oblique projection 
in which all the wells and paths were resolved. Even then, all the energy contours 
had to be omitted, the energy information being carried by special symbols only. 
For the energy map of a real molecule with three rotation angles, the making of 
such a diagram is a formidable undertaking. With four rotation angles, the project 
fails completely and other methods must be employed [10]. 

For this example, the clarity of Fig. 3 renders unnecessary the dimension reduc- 
tion. However, this technique is illustrated as follows: in Fig. 5, a 2-dimensional 
surface is shown embedded in the rotation space as a 2-dimensional submanifold. 
It virtually contains all the low-energy paths connected to BG and the wells 
which they connect. That is, it shows the connections of one component of the 
whole low-energy region (the other component being, by symmetry, like it). In 
Fig. 6a the surface is shown flattened out; here it is provided with the coordinate 
system shown by arrows. The corresponding arrows shown in Fig. 5 indicate what 
is actually a curvi]linear coordinate system on the surface. That is, through each 
point of the surface there are two approximately perpendicular paths, one roughly 
parallel to the arc F1 in U1 which goes through A and B, the other roughly parallel 
to the arc F2 in U2, going through C, G, and E. The arcs F1 and F2 are defined 
in Fig. 6b, c. The surface closely approximates the cartesian product F 1 • F 2. The 
wells and connections appearing in the surface constitute a graph with capacity 
[7], the nodes being the wells and the edges being connections. 

A change in the symbols representing energy allows depiction of all possible 
energy values, from zero up to a cut-off energy. This representation is shown in 
Fig. 7, with cut-off energy 8 k. The result is referred to as a "balloon diagram" 
or energy well connection graph. The figure resembles a contour map showing six 
interconnected local minima and two isolated local minima. Only a single contour, 

"[2 

"[1 

Fig. 5. The 2-dimensional surface embedded in U 1 x U2 as a 2-dimensional submanifold (molecule M) 
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Fig. 6. a The 2-dimensional energy graph surface as developed in its own (curvilinear) coordinate 
space, b The curvilinear coordinates as defined in U1, and c in U2 (molecule M) 

8 k, is given. It should be borne in mind that the only distances that have meaning 
in Fig. 7 are those depicting energy. The diameter across a disk (node) representing 
a well of minimum energy e is calculated d = c(8 - e), where c is a scale factor. 
For a connecting bar (edge) the width, d, of  the bar is calculated from the height 
of the barrier by the same formula, with the same value of c. 

This example was chosen as introduction to the technique because Fig. 3 is 
sufficiently comprehensible to actually illustrate the embedding of the surface 
when redrawn as Fig. 5. For most real examples, no such figure will be available. 
However, the embedding was actually defined by F1 and F2, which are in turn 
defined in Fig. 6b, c. Thus, when the technique is applied in practice, the essential 
figures [11] will be the equivalents of Figs 1 and 6b, c, leading to the connection 
graph, which is equivalent to Fig. 7. 

3. A real example: m-trifluoromethyl-N-ethyl-amphetamine (fenfluramine); 
reduction to dimension 2 

The original report [10] on the conformational energies of  fenfluramine contains 
contour maps showing some of the energy variation as a function of four variables. 

l (; 6 E ( iz ,  "r3) _-- 

> 8 k  .... 
T1 

Fig. 7. Energy well connection graph for the hypothetical molecule M, shown as a graph with capacity 
in the form of  non-metric contour map or "balloon diagram" 
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(See Fig. 8). The most important in-vacuo-energy well information given there 
will be summarized here in a 2-dimensional connectional connection graph, 
Fig. 10. 

The four torsion angles (variables) are divided into two segments of two torsion 
angles each, (q-l, q-2) and (r3, q-4). Of these, the first segment (pair) describes the 
connection of a chain to a ring, Y1, q-~ being the angle of the chain root relative 
to the plane of the ring. With respect to ~-~, the energy variation is, therefore, 
essentially periodic with period 180 ~ Thus, only half of the variation of q-i will 
be shown. 

The second segment, (~'3, q-a), describes the configuration of the free outer end 
of a chain. Consequently, the map of energy as a function of q-a and q-4 for fixed 
(q-~, q-2) has a very characteristic shape. For different choices of (q-a, q-2) the energies 
vary a great deal, but the locations of the wells (and to some extent the barriers) 
vary only little. As in the preceding example, the most prominent well locations 
are labelled with capital letters, A, B, and C. They are shown in Fig. 9b, a section, 
along with a path, F2, which connects them relatively favorably for the choices 
of (~'1, q-2) that are of interest. 

Any map of energy as a function of ~ and q-2 for fixed (q-a, q-4) has also a 
characteristic shape. It shows one or more of three prominent energy wells, one 
for the molecule in the "extended" conformation, and two for the two "folded" 
conformations, whose locations vary little with the choice of (q-3, q-a). These wells 
we call E, F, and G. They are shown in the projection diagram Fig. 9a, along 
with a path connecting them, F1. Paths near F~ are relatively favorable connections 
among E, F, and G, no matter what the choice of (q-3, q-4). 

The cartesian product of the paths F 1 and F2 embeds a plane into ( q ' l ,  q-2, "T3, "7"4)- 

space as a curved 2-dimensional submanifold. Very near it lie the wells EA, EB, 

a 

sz sz 

Y I ~ . L -  1 x 2 ~ ,  ~ Y3 ~ 'T 1 " , / Y 5  

b 

CF 3" 

CH 3 H H H 

7 '7 11 I I 

i r / 
H H Ii H 

Fig. 8. a Segment structure of the fenfluramine molecule, b Molecular structure of fenfluramine 
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- 180 0 180 

b 

0 360 

Fig. 9. Definition of the (curvilinear) coordinate paths F~ and F 2.for fenfluramine, a Projection into 
(z~, ~-2)-space showing segment wells E, F, G, and path F 1 marked �9 �9 .. b Section for ('/3, 7"4) taken 
through (zl,  ~'2) = ( 240~ 60~ showing segment wells A, B, C, and path F 2 marked �9 �9 �9 

EC, FA, FB, FC, GA, GB, and GC, and also the most important connections 
among them. For presentation purposes, we take the bottoms of these wells and 
the barriers of these connections to actually lie in the submanifold. In Fig. 10 
the submanifold is shown in its own coordinate space (flattened out), and 
equipped with a 8 k energy contour (similar to that in Fig. 7). 

The figure readily shows the lack of very low energy connections between chain 
conformations, even in the "extended" form, E. The barrier of at least 6 k in 
every direction from tthe global minimum, GA, is also apparent. Although the 
chain in conformations B or C can cross the ring from F to G at energies of 3 k, 
in conformation A it does not, even in the vicinity of the global minimum. 
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(T3,T4) 
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ii 
~ J 

(TIsT 2 ) 
E F G E 

Fig. 10. Energy well connection graph for fenfluramine, showing 8 k energy contour. Curvilinear 
coordinates defined in Fig. 9 

4. The major steps in preparing an energy well connection graph 

1. Conformational  analysis to find locations and energies of  wells and barriers 
(connections). 

2. Segmentation of the molecule. 
3. Drawing the arcs (F) in the rotation spaces of the segments, determining the 

curvilinear coordinates and thus embedding the submanifold in the rotation 
space of  the molecule. 

4. Drawing the wells and connections (with their energies) on the coordinate 
grid for the submanifold,  thus flattening the submanifold. 

5. A more complex example: N-methyl-3-phenyl-3-(o-methoxyphenoxy)- 
propylamine(nisoxetine); reduction to dimension 3 

The nisoxetine molecule has 7 rotation angles. One of these appears to have only 
one favorable value [12]. Hereafter  it will be considered fixed rigidly at that value 
and ignored. The remaining rotation angles are numbered rl to r6, as shown in 
Fig. 11. The molecule consists of  three segments; the first is $1, whose interest 
centers on the relationship between two aromatic rings, the rigid groups Y1 and 
II4. U~, the rotatiorr~ space of  $1, has dimension 3. In U1 there are six important 
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a 

r / Y 2 ~  xo "t- / Y s ~ ' r 5  x 6 J  Y7 

Y1 

b 
CH3~ 

0 
Hx H H 

,,7 ?. 
C ' C " ~ C H 3  

Fig. 11. a Segment structure of nisoxetine molecule, b Molecular structure of nisoxetine 

Table 2. Energy well locations for nisoxetine, by segment 

Segment Variables Approximate values Conformation symbol 

$1 (~h, r 73) (70 ~ 80 ~ 70 ~ A 
(40 ~ 140 ~ 40 ~ B 
(290 ~ 190 ~ 80 ~ ) C 
(270 ~ 70 ~ 60 ~ D 
(210 ~ 50 ~ 170 ~ E 
(40 ~ 40 ~ 160 ~ ) E' 

S 2 T4 60 ~ 60 ~ 
1800 180 ~ 
300 ~ 300 ~ 

S3 (r r ( 60~ 60~ P 
(300 ~ 120 ~ Q 
(6o o, 18o o) R 
(90 ~ 240 ~ S 
(300 ~ 300 ~ T 
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energy wells, which have been labelled, A, B, C, D, E, and E' (see Table 2). The 
properties of E and E' are very similar and both are separated from essentially 
all the other wells so that the curvilinear coordinate path ignores E' but passes 
through the other five. Projection of U1 into the (rl, ~-2)-plane resolves these 
wells and, for simplicity, only that projection of the path F~ is given (Fig. 12a). 

The sequence r5-r6 defines a chain and it is designated as segment $3 (leaving 
r4 to constitute $2). Out of the nine expected energy wells in its 2-dimensional 
rotation space U3, five are generallymore prominent than the others, and F3 is 
made to join these five along a path that is usually favorable: P, Q, R, S, T 
(Fig. 12c). (See Table 2). 

There remains r4, the angle of the chain root. In some respects it is similar to ~'2 

b 60 180 300 "r 4 

360 

C 

Fig. 12. Curvilinear coordinate paths for nisoxetine 
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in fenfluramine. It becomes segment $2, with favorable locations 60 ~ 180 ~ 300 ~ 
connected by F2 (Fig. 12b). (See Table 2). 

In the 6-dimensional space of nisoxetine, therefore, there are 5 x 3 x 5 -- 75 promi- 
nent locations for wells. Each well might connect with between 6 and 26 immedi- 
ately adjacent wells, making between 6 x 75/2 = 225 and 26 x 75/2 = 975 possibly 
important barriers, of which 45 were found to have heights of less than 8 k. If 
the barriers were listed in a table, each entry would require values for seven 
variables: three coordinates (F1, F2, F3) for each of the two wells connected, and 
the barrier energy also. Even for the 45 significant barriers, such a table would 
be unwieldy and hard to comprehend. By contrast, the energy-well connection 
graph (Fig. 13) puts all the wells and connections into a pattern. 

The connection graph provides an efficient method of presenting such information 
as the following: 

The chain is rather flexible beyond the root for five choices of S1 and $2 
conformation, specifically, for r4 = 180 ~ or near the global minimum, which is 
the largest ball, low in the right rear at (A, 180 ~ P). 

I (Ts ,T6 )  

0kl [ 

2kl I 

"1 I 
6kll 

Fig. 13. Energy well connection graph for nisoxetine 
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The global minimum connects readily (even if not directly) with an adjacent 
energy well in each curvilinear coordinate direction. Since the two most favored 
ring positions, A and B, are actually fairly'close and similar [12], chain root ($2) 
and the outer chain ($3) rotations provide most of the variety near the global 
minimum. From the global minimum (A, 180~ P) there is a possible 7-4 ($2) rotation 
to (A, 60 ~ P), but not to (A, 300 ~ P). From the adjacent point (B, 180~ P) the 
possible 7-4 rotation goes in the opposite direction to (B, 300 ~ P) but not to 
(B, 60 ~ P). In each case the most favored path requires some accommodation in 
the outer chain. It is shown with a dashed line. 

Looked at differently, the connection graph shows barrier heights. Between B 
and C there is a notable barrier (even for the only favorable $2-$3 configuration) 
whose low-energy crossing is marked ~ .  This corresponds primarily to the 
rotation of the substituted ring Y1 in the vicinity of the other ring, Y4- (The axis 
of rotation is the 7" 1 bond.) In Fig. 12a it is the passage from the lower half plane 
downward along the coordinate path F1 to the top of the adjacent upper half 
plane. The barrier is about 6.5 k. Along the broad and direct route upward from 
B to C, in Fig. 12a, (not on the coordinate path) the energy barrier is slightly 
higher. Fig. 13 shows the lower energy path and (in this way) the lack of very 
low-energy connections between 0~ ~1 < 180 ~ and 180~ 7-1 < 360 ~ 

Overall, the connection graph shows very clearly the compact region of flexibility, 
and the single connection, marked ~-~, into that small portion of the remainder 
of the rotation space in which there is still some chain flexibility. 

Unlike the 2-dimensional energy-well connection diagrams in Figs. 7 and 10, any 
3-dimensional diagram will itself have presentation problems. The view selected 
for Fig. 13 was chosen after all the data were collected. The global minimum was 
then placed relatively far from the viewer, where it could remain visible without 
obscuring smaller (high energy) features. The vertical connections (chain rota- 
tions) were resolved only just far enough to avoid obscuring vertical connections 
in the rear, while leaving in the clear the horizontal ($1, $2) connections around 
the global minimum. 

6. Conclusion 

In three examples, including two real molecules, the energy-well connection 
diagram is presented in the form of a graph with capacity. The connection graph 
shows wells and barriers that are significant because of low energy (up to 8 k). 
The wells, barriers, and energies are visible and readily comprehensible from the 
connection graph because of the analogue representation of the energy, and the 
reduction of dimension from that of the rotation (conformation) space to 
dimension 2 or 3. 
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